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Abstract: In capital market research, stock or index prices are 

notoriously difficult to predict, because of their chaotic nature. For chaotic time 

series, the prediction techniques of PSR (Phase Space Reconstruction) methods, 

which are based on attractor reconstruction, can be employed to extract the 

information and characteristics hidden of the dynamic system from the time series. 

However, the existence of noise which may mask or mimic the deterministic 

structure of the time series, can lead to spurious results. In this work, EMD 

(Empirical Mode Decomposition) is specially developed for analyzing such 

nonlinear and non-stationary data. Thus, the major of this study is to integrate PSR, 

EMD and NN techniques optimized by particle swarm optimization to attempts to 

increase the accuracy for the prediction of stock index. The effectiveness of the 

methodology was verified by experiments comparing random walk model for 

Nasdaq Composite Index (NASDAQ). The results show that the proposed 

PSR-EMD-NNPSO model provides best prediction of stock index. 

Keywords: Phase space reconstruction, Empirical mode decomposition, 

Neural network, Particle Swarm Optimization, Financial time series forecasting. 

JEL Classification Code: C32, C45, C53 
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Introduction 

In the business and economic environment, it is very important to 

accurately predict various kinds of financial variables. In the past, most prediction 

models were based on conventional statistical methods, such as random walk, 

exponential smoothing, regression analysis, multivariate analysis and so on. It has 

been indicated that conventional statistical techniques for forecasting have reached 

their limitations in applications with nonlinearities in the dataset (Refenes, et al., 

1994). Artificial neural network, a computing system containing many simple 

nonlinear computing units or nodes interconnected by links, is a well-tested method 

for financial analysis on the stock market (Refenes, et al., 1997). Neural networks 

have been shown to be able to decode nonlinear time series data which adequately 

describe the characteristics of the stock markets (Lapedes and Farber, 1987). In 

past decades, neural networks have been explored by many researchers for 

financial forecasting (Ecer, 2013). Among these researches, some are conducted 

particularly on forecasting the value of a stock index (Shavandi and Alizadeh, 

2010). Using neural networks for modeling and predicting stock market has been 

the subject of recent empirical and theoretical investigations by both academics and 

practitioners. 

In capital market research, stock or index prices are notoriously difficult 

to predict using the traditional forecasting methods, such as least squares regression, 

because of their chaotic nature. Chaos theory points out that the complicated things 

which are originally believed unpredictable have predictability (Lu and Lu, 2002). 

Moreover, chaos is widely found in the fields of physics, other natural sciences and 

empirical evidence of chaotic behavior in financial time series can also be found 

(McKenzie, 2001). For chaotic time series, the techniques of prediction based on 

phase space reconstruction (PSR) can be employed to extract the information and 

characteristics hidden of the dynamic system from the time series. PSR is an 

embedding that maps a signal into a sufficiently high dimension. In the new high 

dimensional space, a structure is formed that is topologically equivalent to the 

original phase space. This arouses encouragement to apply the chaos theory to the 

time series forecast.  

The vast majority of PSR methods are based on attractor reconstruction 

from time series and such characteristics as largest Lyapunov exponent, K2 entropy, 

and correlation dimension calculation (Kantz and Schreiber, 2004). However, there 

are noise, which may mask or mimic the deterministic structure of the time series, 

can lead to spurious results (Zhang, Luo, and Small, 2006). In this work, empirical 
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mode decomposition (EMD), which is a new technique in dealing with noise and 

nonlinearity in stock index prediction, is applied to decompose the stock index time 

series. The EMD technique is specially developed for analyzing nonlinear and 

non-stationary data (Huang et al., 1998). By the EMD technique, any complicated 

data set can be decomposed into a finite and often small number of intrinsic mode 

functions (IMFs). This decomposition method is adaptive, and, therefore, highly 

efficient. Since the decomposition is based on the local characteristic time scale of 

the data, it is applicable to non-linear and non-stationary processes. Thus, the major 

objective of this study is to integrate PSR, EMD and NN technique optimized by 

particle swarm optimization to attempts to increase the accuracy for the prediction 

of stock index. 

1. Methodology 

2.1. Phase space reconstruction (PSR) 

The idea of the chaotic dynamics reconstruction technique stems from 

the embedding theorem developed by Takens (1981) and Sauer, et al. (1991). The 

theorem regards a one-dimensional chaotic time series as compressed information 

from a higher dimension space. According to Taken’s theorem, we tried to 

reconstruct an attractor which preserves the invariant characteristics of the original 

attractor, since the original attractor is unknown. The dynamics of the time series x1, 

x2, …, xn is fully captured or embedded in the m-dimensional phase space, m  d 

where d is the dimension of the original attractor. A vector Yt in the reconstructed 

phase space is constructed from the time series as follows： 

t
Y = [  )1(,...,,  mttt xxx ]                        (1) 

where τ is the delay time. 

The above approach to reconstruct the attractor is based on Taken’s 

theorem which guarantees that for an infinite, noise free, data series, one can 

almost always find an embedding dimension m preserving the invariant measures 

of the chaotic attractor of dimension d (Takens, 1981).  

m  2d + 1.                            (2) 

Takens considered that the sufficient condition for the embedding 

dimension is m  2d + 1. However, a too large embedding dimension needs more 

observations and complex computation. Moreover, if we choose a too large 
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embedding dimension, noise and other unwanted inputs will be highly embedded 

with the real source input information, which may corrupt the underlying system 

dynamic information. Therefore, in accordance with Sauer, et al. (1991), if the 

dimension of the original attractor is d then an embedding dimension of m = 2d + 1 

will be adequate for reconstructing the attractor. 

The delay time τ is an important parameter for controlling the accuracy 

of time-series prediction. Some of the methods for determining the optimal delay 

time τ include auto correlation (AC) (Broomhead, 1986), average displacement 

(AD) (Rosenstein, et al., 1994), and mutual information (Fraser and Swinney, 

1986). Each method has its own advantages and drawbacks. Kim, et al. have 

developed a special technique called the C-C method, which can estimate both the 

delay time τ and embedding window well. This method is relatively easy to 

implement with good performance and, therefore, is discussed in this paper.  

Since d in Eq. (2) is an internal characteristic of the system and usually 

unknown in real applications, its estimation, namely correlation dimension Dm, is 

usually calculated and used to determine m in place of D. The G-P algorithm 

(Grassberger and Procaccia, 1983) is one of the popular methods for determining 

Dm. In this method, a correlation integral ln Cm(r) is defined as 

)(C rm = 
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where H is the Heaviside function and m is the embedding dimension. 

For r sufficiently small and the number of observed values N sufficiently large, 

then 

mD = 
)ln(

)(ln
lim

0 r

rCm

r
                                (4) 

So the G-P algorithm first plots lnCm(r) against ln(r) curves by 

increasing the values of m until the slope of the curve’s linear part is almost 

constant, then estimates the slope of the straight portion of the curves with the 

similar or same linear parts over a certain range of r, and further regards the 

estimated slope as the correlation dimension Dm. 

When considering chaos, tools based on PSR have been developed. The 

most commonly used of these chaos tests are the Lyapunov exponents test and the 

Grassberger－Procaccia correlation dimension test (Harrison, et al., 1999). Here 

we concentrate on the latter. For a chaotic attractor, Dm is a non-integer, the value 

of which determines whether the system is low- or high-dimensional. 
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1.2. Empirical mode decomposition (EMD) 

Empirical mode decomposition method based on Hilbert-Huang 

transformation is developed from the simple assumption that any signal consists of 

different simple intrinsic mode oscillations. The essence of the method is to 

identify the intrinsic oscillatory modes (IMFs) (Huang, et al., 1998) by their 

characteristic time scales in the signal and then decompose the signal accordingly. 

The characteristics time scale is defined by the time lapse between the successive 

extremes. 

To extract the IMF from a given data set, the sifting process is 

implemented as follows. First, identify all the local extrema, and then connect all of 

the local maxima by a cubic spline line as the upper envelope. Then, repeat the 

procedure for the local minima to produce the lower envelope. The upper and 

lower envelope. The upper and lower envelopes should cover all the data between 

them. Their mean is designated m1(t), and the difference between the data and m1(t) 

is h(t), i.e.: 

)()()( 11 thtmtx                          (5) 

Ideally, h1(t) should be an IMF, for the construction of h1(t) described 

above should have forced the result to satisfy all the definitions of and IMF, we 

demand the following conditions: (i) h1(t) should be free of riding waves, i.e., the 

first component should not display under-shots or over-shots riding on the data and 

producing local extremes without zero crossing. (ii) To display symmetry of the 

upper and lower envelops with respect to zero. (iii) Obviously the number of zero 

crossing and extremes should be the same in both functions. 

The sifting process has to be repeated as many times as it is required to 

reduce the extracted signal to an IMF. In the subsequent sifting process steps, h1(t) 

is treated as the data; then: 

)()()( 11111 thtmth                    (6) 

Where m11(t) is the mean of the upper and lower envelops of hs(t). This 

process can be repeated up to k times; h1k(t) is then given by 

)()()( 11)1(1 thtmth kkk                      (7) 

After each processing step, checking must be done on whether the 

number of zero crossings equals the number of extrema. The resulting time series is 

the first IMF, and then it is designated as c1(t) = h1k(t). The first IMF component 
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from the data contains the highest oscillation frequencies found in the original data 

x(t). 

This first IMF is subtracted from the original data, and this difference, is 

called a residue r1(t) by: 

)()()( 11 trtctx                      (8) 

The residue r1(t) is taken as if it was the original data and we apply the 

sifting process to it again. The process of finding more intrinsic modes c1(t) 

continues until the last mode is found. The final residue will be a constant or a 

monotonic function; in this last case it will be the general trend of the data. 





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j

nj trtctx
1

)()()(               (9) 

Thus, one achieves a decomposition of the data into n-empirical IMF 

modes, plus a residue, rn(t), which can be either the mean trend or a constant. 

2.3. Artificial Neural Network (ANN) 

An ANN is a biologically inspired form of distributed computation. It 

simulates the functions of the biological nervous system by a composition of 

interconnected simple elements (artificial neurons) operating in parallel. An 

element is a simple structure that performs three basic functions: input, processing 

and output. ANNs can be organized into several different connection topologies 

and learning algorithms (Lippmann, 1987). The number of inputs to the network is 

constrained by the problem type, whereas the number of neurons in the output layer 

is constrained by the number of outputs required by the problem type. Moreover, 

the number of hidden layers and the sizes of the layers are decided by the designer. 

ANNs apply many learning rules, of which BP is one of the most 

commonly used algorithms in financial research. BP trains multilayer feed-forward 

networks with differentiable transfer functions to perform function approximation, 

pattern association and pattern classification. It is the process by which the 

derivatives of network error, with respect to network weights and biases, are 

computed to perform computations backwards through the network. Computations 

are derived using the chain rule of calculus. There are several different BP training 

algorithms with a variety of different computation and storage requirements. No 

single algorithm is best suited to all the problems. All the algorithms use the 

gradient of the performance function to determine how to adjust the weights to 

minimize the performance. For example, the performance function of feed forward 

networks is the Mean Square Error (MSE). 
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The basic BP algorithm adjusts the weights in the steepest descent 

direction (negative of the gradient); that is, the direction in which the performance 

function decreases most rapidly. The training process requires a set of examples of 

proper network inputs and target outputs. During the training, the weights and 

biases of the network are iteratively adjusted to minimize the network performance 

function. 

2.4. Particle swarm optimization (PSO) 

In PSO (Parsopoulos and Vrahatis, 2002) the population is called a 

swarm, and each individual of the swarm is called a particle. In each iteration step j 

of the optimization, each particle q yields an updated vector 1j
qX   using its best 

personal vector j

qP  so far and the best global vector j
gP   among all individuals of 

the population. For the update of j
qX , firstly a velocity vector j

qV  is updated by 

using two vector differences, and secondly the velocity vector is added to j
qX  for 

the calculation of 1j
qX   by the following rules: 
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where j

qX  is the vector of the qth particle at the jth iteration step. In Eq. 

(10), r1 and r2 are random numbers of the interval (0,1), and the other values ω, c1 

and c2 are real-valued parameters of the PSO. In addition to this standard PSO, a 

random change of the components in each iteration step is introduced to help avoid 

suboptimal local minima in the search space. For each component class of 1j

qX , 

i.e., for the component class of the epoch. 

2. Forecasting Model 

3.1 Establish the training sets 

Phase space reconstruction method provides a way to characterize the 

chaotic system. Reconstructed data Yt Eq. (1) can be used to train the predictor 

model. The l-lead time prediction, x(t+l), is a function of lag vector Yt in the 

reconstructed space. The function can be expressed as follows: 

F(Y))(  ltx                                    (11) 

Recently, some forecasting techniques for chaotic time series almost 

fixed their selected time lag at 1(Liong and Sivapragasam, 2002), thus we also fix 

time lag = 1 in this study. A vector of m embedding dimension is put into the model, 

the data are predicted, in the function 



 

 

 

 

 

 

Heng-Li Yang, Han-Chou Lin 

                                                                   

)))1((),...,(),(()1(
^

  mtxtxtxftx             (12) 

where )1(
^

tx  stands for the value predicted, and 

))1((),...,(),(   mtxtxtx  stand for input.  

3.2 Optimization 

 

Figure 1. Schematic representation of the proposed PSR-EMD-NNPSO model 

 

Consider a great influence of the parameters on generalization 

performance of NN, particle swarm optimization is applied to search the 

parameters of NN. The procedure of the PSR-EMD-NNPSO model is interpreted in 

Fig. 1. The optimal process by particle swarm optimization is described as follows: 

Step1. Initialize parameters of particle swarm optimization including the number of 

evolutionary generation, population size, inertia weight, and randomly 

generate a population of particles composed of epoch. 

Step2. Use the selected parameters to train a NN model. The testing samples are 

used to measure forecasting ability of the BPNN model. Applicability of the 

model is measured by fitness as mean absolute percentage error (MAPE). 
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Step3. Compute the velocity and position of each particle with Eq.(10), 

respectively. 

Step4. Stop the algorithm if termination criterion is satisfied, and the best NN is 

gained. Otherwise, produce the new particle according to Eq.(10). 

3. Experimental Results 

4.1 Research data and evaluation criteria 

In an experiment, we evaluated our proposed model by the Nasdaq 

Composite Index (NASDAQ). Since closing prices have been used in many 

previous studies, in the same way, the empirical data used are also the daily closing 

prices of the stock index, which are extracted from the TEJ (Taiwan Economic 

Journal) Database (January 1997 – August 2008). In addition, the data are divided 

into training and testing sets. Many studies have applied a convenient ratio to 

separate training (in-sample) from testing (out-of-sample) data between the ratios 

7：3 and 9：1 (Zhang, 2004). This study follows the choice: the data from Jan. 1997 

to Apr. 2006 are used for training, while the data from May 2006 to Aug. 2008 are 

used for testing. Hence, the ratio adopted is 8：2, which is a ratio that lies 

in-between. 

Each data point was scaled by Eq. (13) within the range of (0,1). This 

scaling for original data points helps to improve the forecasting accuracy (Chang 

and Lin, 2001):  

15.07.0
minmax

min 




XX

XX t                        (13) 

where tx is the exchange rate at time t, maxx  is the maximum of exchange rates 

during the period of data source and maxx  is the minimum of exchange rates 

during the period of data source. 

The prediction performance is evaluated using the following statistics: 

MSE (mean-squared error) 、 RMSE (root-mean-square error) 、 MAPE 

(mean-absolute percentage error)、MAE (mean-absolute error) and DS (Directional 

Symmetry). These formulas are shown in Table 1. The former four criteria measure 

the correctness of a prediction in terms of levels and the deviation between the 

actual and predicted values. The smaller the values, the closer the predicted 

time-series values will be to the actual values. Although predicting the levels of 

price changes (or first differences) is desirable, in many cases the sign of the 

change is equally important. Most investment analysts are usually far more 
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accurate at predicting directional changes in an asset price than predicting the 

actual level. DS provides an indication of the correctness of the predicted direction 

given in the form of percentages (a large value suggesting a better predictor). 

Table 1. Performance criteria and formulas 
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Note: tx  denotes the real stock index on the “t”th day, 

^

tx  represents the predicted stock index, and 

N is the number of days. 

In order to compare the forecasting capability of the proposed 

PSR-EMD-NNPSO methodology with traditional approaches, a random walk 

model is used as the benchmark model. 

4.2 Implementation of PSR 

We apply reconstruction phase space in time series of stock index,  ix . 

C-C method was used to determine optimal delay time τ in this study, and the 

results, the first local minimum of 
_

S(t) , were illustrated in Fig. 2.(a) The value of 

the first local minimum 
_

S(t)  on x-axis for NASDAQ is 11, which is the first 

locally optimal delay time τ for independence of the data (Kim, et al., 1999).  

After the optimal delay time τ was found, the correlation integrals and 

the exponents for the stock index series are computed using the 

Grassberger–Procaccia algorithm for phase-spaces reconstructed with embedding 

dimensions from 2 to 50. Fig. 2.(b) and (c) present the results of the correlation 

integral analysis. The relationship between C(r) and r, shown in Fig. 2.(b), indicates 

clear scaling regions (between log r=5.5 and 7.0) for all the embedding dimensions 

used, allowing fairly accurate estimates of the correlation exponents, m, which are 

presented in Fig. 2.(c) against the corresponding m values. Fig. 2.(c) shows an 

increase in the correlation exponent with the embedding dimension up to a certain 

point, and saturation beyond this point. Such saturation may be an indication of the 

deterministic dynamics in the runoff phenomenon. The saturation value of the 

correlation exponent (or correlation dimension) is about 2.806, suggesting that the 

number of variables dominantly influencing the runoff dynamics (or the minimum 

number of phase-spaces required) is 3. 
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(a) 

 

(b) 

 

(c) 

Figure 2. (a) Optimal delay time τ with C-C method. (b) Optimal embedding 

dimension with G-P method. (c) Correlation dimension 

4.3 Data preprocessing using EMD 

After one-dimensional time series of the NASDAQ index was 

reconstructed by PSR, 3 time series served as inputs for the predictor model would 

be determined. Before feeding those input data into predictor model for forecasting, 

we pre-processed each input data using EMD. 

Take first input data )}({ tx  for example, the analytic process as shown 

in the following (Huang et al., 2003): the data set shown in the sub-figure 

“Original” in Fig. 3, after subjected to the EMD, yields eleven IMF components 

shown in Fig. 7. The decomposition identifies eleven modes: Mode 11c is the 

residue, mode 1c contains the highest signal frequencies and mode 2c  the next 

higher frequency band and so on. Here we can immediately observe many 

interesting features of the data from just the IMF components. To begin with, there 

is an obvious change in the data quality starting around 800, when the amplitudes 

of the short period IMF components (i.e. 1c  and 2c ) suddenly increase. And then, 

our major work for data preprocessing is to reconstitute the data from the 
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components (reconstruction procedure) which illustrates the use of the EMD 

process as a filter. The sequence of steps is shown as follows in Fig. 3: In each of 

the sub-panels, we plot the data as a dotted line and the partial sum of the IMFs as 

a solid line. In Fig. 4(a), we plot the data and component 11c , the residue of the 

sifting. If we add the oscillatory component 10
c , we have the result in Fig. 4(b). 

When adding the component 7
c , in the result shown in Fig. 4(e), this smooth line 

clearly gives the smoothest trend of the data variation. With step by step adding of 

the IMF components, we finally arrived at the sum of all the IMF components 

shown in Fig. 4(k). Due to the c1and c2 belong to high frequency components, we 

eliminated the two components from this data set and adopted Fig. 4(i) as the final 

result of data preprocessing. 

Figure 3. The IMF for the first data set x(t) of NASDAQ index through the 

EMD 
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Figure 4. Re-construction of the data from the IMF components. This is also a 

demonstration for using the EMD technique as a filter. 

4.4 Implementation of BPNN optimized by PSO 

In this paper, standard three-layer BPNNs are used as benchmarks. The 

BPNN technique in this experiment is implemented using the Matlab 7.3’s ANN 

toolbox. Several learning techniques, such as the quasi-Newton method, 

Levenberg-Marquardt algorithm and conjugate gradient methods could also be 

used. For efficiency, however, we use the Levenberg–Marquardt algorithm. This 
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study follows Kim (2003) to choose the number of nodes (n/2, n, 2n) in the hidden 

layer and stopping criteria for training. 2, 3, 6 hidden nodes are employed for each 

stopping criteria and the epochs are optimized by PSO 

(http://psotoolbox.sourceforge.net/). The learning rate is 0.001(default). The 

activation function of the hidden layer is sigmoid and the output node uses the 

linear transfer function. This study allows 3 input nodes because 3 input variables 

(i.e. three embedding dimensions). Table 2. shows the results based on learning 

epochs optimized by PSO for specific hidden nodes. 2 hidden nodes and 114 

learning epochs are optimal, and the testing MAPE is 0.008506. 

Table 2. PSR-EMD-NNPSO model selection result 

Hidden nodes Epochs optimized by PSO Testing MAPE(%) 

2 114 0.8505 

3 129 0.8533 

6 274 0.8510 

 

Table 3. Comparison of the forecasting results from the two models 

Model MSE RMSE MAE MAPE(%) DS 

PSR-EMD-NNPSO 686.2062 26.1955 20.5017 0.8506 0.6000 

Random Walk 809.2262 28.4469 21.4588 0.8880 0.4983 

4.4 Performance criteria and results 

The forecasting results of the PSR-EMD-NNPSO and Random Walk 

models for the testing data are collated in Table 3. From Table 3, it can be found 

that the MSE, RMSE, MAE and MAPE of the PSR-EMD-NNPSO model are, 

http://psotoolbox.sourceforge.net/
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686.206, 26.1955, 19.68 and 0.8506, respectively. It can be observed that these 

values are smaller than those of the Random Walk model. It indicates that there is a 

smaller deviation between the actual and predicated values using the proposed 

PSR-EMD-NNPSO model. Moreover, the PSR-EMD-NNPSO model has higher 

DS which is 0.6000. DS provides a good measure of the consistency in prediction 

of the index direction. Thus, it can be concluded that the proposed 

PSR-EMD-NNPSO model provides a better forecasting result than the Random 

Walk model in terms of prediction error and prediction accuracy. 

4. Conclusions 

This study applies phase space reconstruction (PSR) method and 

empirical mode decomposition (EMD) to time series of the NASDAQ index and 

forecasts stock index with NN approach optimized by particle swarm optimization 

(PSO), namely PSR-EMD-NNPSO. Wes have evaluated the feasibility of the 

proposed model compared to the Random Walk model. In this paper, the daily 

closing prices of NASDAQ COMPOSITE stock indices extracted from the TEJ 

(Taiwan Economic Journal) Database (January 1997 – August 2008) are used as 

experimental data. Moreover, G-P correlation dimension method is also used for 

chaos test, for a chaotic attractor, correlation dimension Dm is a non-integer (equal 

to 2.806 from the time series of the stock indices). 

We evaluate performance of the three models by MSE、RMSE、

MAPE、MAE and DS. It is clear from empirical results, the proposed model 

PSR-EMD-NNPSO gives better accuracy not only in the derivation performance, 

but also in the direction performance. Out experiments also show that the AI 

technique can assist the stock market trading and the development of the financial 

decision support systems. 

Future research may apply other AI methods and data analytic 

techniques to the forecasting of Nasdaq Composite Index. Direction prediction 

criteria are important signals in the trading strategies of investors. In the current 

models, we only selected the daily closing prices of the stock index as input 

variables. Future research may include other efficient input variables (such as some 

macroeconomic variables) and try to use diverse data for testing feasibility. 
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